29 734
19 января 2022 в 8:00
Автор: Антон Мерзляков

Почему аккумуляторы взрываются и как этого избежать? Вот как работает батарея в вашем смартфоне

Время автономной работы — важный аспект, на который мы обращаем внимание при выборе нового смартфона. Ведь возможность проработать полтора-два дня без подключения к розетке — весомый довод в пользу того или иного аппарата. Но такие показатели сегодня демонстрируют далеко не все гаджеты. Разбираемся, каким образом работают аккумуляторы в современной технике, каких типов могут быть батареи в них, а также вспоминаем простые правила, которые позволят сохранить целостность аккумулятора смартфона, планшета или ноутбука дольше.

Как вообще работают аккумуляторы и каким образом с этим помогают песочные часы

Литийионные аккумуляторы — самые распространенные. Они применяются практически во всей мобильной технике — от ноутбуков со смартфонами и планшетами до геймпадов игровых консолей. И да, сразу разрушим устоявшийся миф о том, что новый телефон сперва стоит полностью разрядить, потом восполнить энергию до 100%, после чего им можно пользоваться.

Очевидно, что это не так — во всяком случае для современной техники. Подобные манипуляции еще каким-то образом можно оправдать в отношении железоникелевых или никелево-металлогидридных аккумуляторов, для которых так называемый эффект памяти был актуален: это было обусловлено материалами, которые применялись в их внутренней структуре. Но для литийионных батарей эти правила не действуют (ну или почти не действуют).

Но обо всем по порядку. Все аккумуляторы работают за счет химических реакций по обмену электронами между атомами. Если упростить, одно вещество отдает другому электроны, и во время подобного обмена выделятся энергия. Так что утверждать, пусть и на бытовом уровне, что аккумуляторы (те же пауэрбанки) являются простыми «хранилищами» энергии, заполняемыми до предела, не до конца верно.

Более уместный пример — песочные часы, в которых вместо песка как раз используются электроны. Вспоминаем школьный курс физики: электроны — это составная часть атомов. Последние состоят из ядра, включающего нейтроны и протоны, и вращающихся возле них электронов.

Важно упомянуть: электроны — это отрицательно заряженные частицы, протоны — положительно заряженные, нейтроны — нейтрально заряженные. И такие «положительные» и «отрицательные» частицы постоянно стремятся к равновесию, то есть притягиваются друг к другу. Вот и получается (в суперупрощенном виде), что в условных песочных часах в одной половине находятся «плюсы», а в другой — «минусы». И в процессе их перемещения возникает электрический ток.

Если бы мы говорили про простую батарейку, процесс был бы необратим. То есть в какой-то момент частицы пришли бы в равновесное состояние (нейтральное), и энергия бы больше не возникала. Но в аккумуляторе можно попытаться заново разделить атомы на положительные ионы и отрицательные электроны — по сути, перегнать «плюсы» и «минусы» в свои части весов. Другими славами, запустить весь процесс заново.

Фото: Learn Engineering

Если говорить техническим языком, в литийионном аккумуляторе есть два электрода: положительный и отрицательный, катод и анод. Популярным материалом для «минуса» выступает графит, для «плюса» — оксид кобальта. В графите заключены атомы лития, которые оксид кобальта стремится притянуть. Этому мешает жидкий электролит, переносящий только положительный заряд.

Аккумулятор подключается к системной плате «плюсом» и «минусом» к соответствующим контактам, и в этот момент между катодом и анодом электроны лития выскальзывают из ловушки и через все компоненты устройства идут к кобальту (вот и электрический ток). Тем временем потерявший электрон литий становится положительным ионом и проходит через электролит, встраиваясь в оксид кобальта.

В общем, суть остается неизменной: при подключении к внешнему питанию в аккумуляторной батарее стартует химическая реакция по возвращению электронов и лития в графитовый анод (то есть на «минус»). Так и происходит процесс зарядки девайсов.

Похоже, литийионные аккумуляторы с нами надолго

У нас уже выходил отдельный материал, в котором подробно рассказывалось о перспективах развития «аккумуляторного дела», с приходом инноваций в который емкость аккумуляторов кратно увеличится при сохранении их размеров, опасность возгорания (об этом подробнее немного позднее) снизится, да и заряжаться такие батареи смогут за секунды.

Кажется, до таких радужных перспектив прогрессу еще далеко. Во всяком случае о прорывных «батарейных» технологиях со схожими свойствами, которые применялись бы в бытовом плане, а не в узкоспециализированном, пока говорят мало. Есть несколько экспериментальных вариантов, обещающих улучшить эффективность аккумуляторных батарей, но пока речь там идет только о предсерийных образцах без массовых сборочных линий.

Кобальт — наше все? И при чем тут Конго

Но и литийионных аккумуляторов существует несколько разновидностей. Да, в смартфонах и другой мобильной технике чаще всего применяются описанные выше батареи с «сердцевиной» из графита и кобальта — вероятно, сейчас вы просматриваете этот материал с устройства с именно такой батареей. Но с кобальтом в последнее время не все так просто.

Методы добычи кобальта и условия труда вызывают у многих опасения. На фото — работники на территории кобальтовой шахты в Конго. Фото: Reuters

Порядка 60% разведанных запасов кобальта находятся в Конго, куда менее обширные запасы разбросаны по планете — например, на территории Австралии, на Кубе, Филиппинах, есть месторождения в США, России, Китае, Канаде, Казахстане, Франции. Но основная проблема заключается в том, что запасы конечны. А с учетом быстрорастущего рынка электромобилей истощение происходит еще стремительнее. Несколько лет назад Китай даже попытался установить контроль над мировыми поставками кобальта (основные мощности по переработке кобальта находятся именно там): настолько ценным является ресурс.

В такой ситуации цены на него растут. В сети утверждают, что кобальт обходится едва ли не вдвое дороже никеля, в 15 раз дороже алюминия и в 1000 раз дороже марганца. Но есть альтернативы: на сегодня известно о шести типах литийионных аккумуляторов, которые различают по материалу катода:

  • литий-кобальтовые;
  • литий-марганцево-оксидные;
  • литий-никель-марганец-кобальт-оксидные;
  • литий-никель-кобальт-алюминий-оксидные;
  • литий-железо-фосфатные;
  • литий-титанат-оксидные.
Показатели удельной энергоемкости свинцовых, никелевых и литиевых аккумуляторов

Некоторые варианты после литий-кобальтовых аккумуляторов выглядят перспективнее. Одни выдерживают больше циклов «перезаписи» электронов, то есть циклов перезарядки, другие способны работать в более широких температурных диапазонах, а еще они долговечнее. Но опять же, несмотря на все преимущества в сравнении с «чисто кобальтовыми» аккумуляторными батареями, производство тех же литий-титанатных вариантов (по сути, самых продвинутых) обходится еще на порядок дороже. Поэтому их используют в лучшем случае в каких-нибудь общественных установках — например, в электробусах.

Иногда ставят на литий-никель-марганец-кобальт-оксидные аккумуляторы (укороченное название — NMC). Они более энергоемкие, выдерживают порядка 2 тыс. циклов перезарядки (кратно больше, чем у литий-кобальтовых) и могут работать в широких температурных диапазонах (за счет чего их любят производители электрокаров). Но, похоже, массовости в микроэлектронике у технологии пока нет — во всяком случае о планах какой-либо из крупных компаний установить подобные батареи в смартфоны информация почти отсутствует. Вероятно, все из-за того, что некоторые модификации NMC-аккумуляторов вполне стабильны, а другие, с чуть измененными характеристиками — уже не настолько (из-за окисления). Хотя это только теория.

Почему аккумуляторы взрываются?

Итак, литий-кобальтовые аккумуляторы, во всяком случае в гаджетах, пока главенствуют. Но довольно часто появляются новости, что смартфоны воспламеняются едва ли не в руках у пользователей. Получается, технология опасна?

На самом деле чаще всего дело во вспламенившейся батарее (причем именно кобальтового типа). Такое может произойти при физическом повреждении самого аккумулятора (скажем, если смартфон упал с высоты) или перегреве. Последнее случается, когда в процессе зарядки поступающее напряжение продолжает поддерживать химическую реакцию (вспоминаем про стремящиеся друг к другу катоды и аноды), даже если аккумулятор уже поврежден или есть сбои в контроллере питания.

Один участок становится слишком горячим, электролит нагревает компоненты батареи, ее корпус трескается. Важно понимать: мини-взрывы случаются крайне редко, чаще всего аккумулятор просто вздувается. Ситуацию можно сравнить с падениями самолетов: каждый раз подобное вызывает небывалый резонанс, однако в целом авиатранспорт считается одним из самых безопасных. Однако если попытаться воздействовать на такую «битую» батарею самостоятельно, заранее не обесточив другие компоненты, то девайс действительно может воспламениться и причинить вред. Таким образом, при первых признаках вздутия несите телефон (планшет, ноутбук, другой гаджет) в сервис.

Есть мнение, что к подобным «перегревам» приводят блоки питания с повышенной мощностью, которые начали распространяться в последние несколько лет. Но подтверждения этой версии отсутствуют. На самом деле до сих пор до конца не понятно, насколько сильно ускоренная зарядка влияет (или не влияет) даже на основные характеристики аккумулятора вроде скорости его износа.

В целом если пользоваться смартфоном или другим «умным» устройством по два-три года, то разницу в скорости деградации аккумулятора заметить вряд ли получится. А после этого срока вы, вероятно, либо уже купите другой телефон, либо просто замените в своем устройстве батарею (более демократичный по цене вариант).

Советы, как заряжать смартфон правильно (и стоит ли этим заморачиваться)

Об этом у нас также выходил отдельный материал. Напомним основные тезисы и добавим кое-что новое.

  • Правильнее всего заряжать смартфон в пределах 20—80% емкости аккумулятора. Это обеспечивает оптимальные условия для долголетия батареи. Это понимают и сами производители: многие современные модели изначально настроены так, чтобы они заряжались до 80% и только потом, поняв, что девайсом в это время не пользуются, на более низкой скорости восполняли запас энергии до 100%. Это касается и ноутбуков.
  • Можно ли оставлять телефон (или другой «умный» гаджет) на зарядке на всю ночь? Можно. Что в самом устройстве, что в адаптере питания устанавливаются уже упоминавшиеся контроллеры питания, не позволяющие принять больше энергии, чем необходимо. Правда, по этой причине стоит использовать только фирменные либо сертифицированные адаптеры питания. В «серых» блоках, продающихся в условном переходе, контроллеров просто может не оказаться — тогда появляется теоретическая опасность описанного выше возгорания.
  • Можно ли пользоваться телефоном во время подзарядки? Прямых ограничений нет, но есть нюанс. В теории лучше отказаться от запуска «тяжелых» программ вроде AAA-игр, и так нагревающих внутренние компоненты устройства. Во время подзарядки батарея также нагревается, и при неудачном стечении обстоятельств может случиться общий перегрев. Но опять же: если аккумулятор механически не поврежден, риски возгорания минимальны. Просто такой подход усиливает естественную деградацию батареи.
  • А беспроводная зарядка может как-то навредить? Не больше, чем проводная — опять же если используются сертифицированные зарядные устройства. Никакой корреляции между беспроводным способом восполнения энергии и проводным с точки зрения безопасности не замечено. Скорее всего, по «беспроводу» процесс займет немного больше времени.
  • Пункты выше кажутся слегка чрезмерными? Основная мысль такая: скорее всего, естественная деградация аккумулятора устройства (обычно современные аппараты рассчитаны на 500 таких полных циклов) произойдет быстрее, чем пользователь успеет навредить батарее режимами вроде ускоренной подзарядки. Легче через пару-тройку лет заменить батарею на новую, когда после 500 таких циклов емкость снизится примерно до 80%.

Читайте также:

сетевое зарядное для телефонов/для планшетов, разъем подключения отсутствует (нужен кабель), выходная мощность 20 Вт, быстрая зарядка, MFI (Made For iPhone/iPod/iPad)
беспроводное зарядное для телефонов/для наушников, разъем подключения MagSafe, выходная мощность 15 Вт, быстрая зарядка, кабель 1 м, MFI (Made For iPhone/iPod/iPad)
сетевое зарядное для телефонов/для планшетов, разъем подключения отсутствует (нужен кабель), выходная мощность 18 Вт, быстрая зарядка

Наш канал в Telegram. Присоединяйтесь!

Есть о чем рассказать? Пишите в наш телеграм-бот. Это анонимно и быстро

Перепечатка текста и фотографий Onlíner без разрешения редакции запрещена. ng@onliner.by