Все давно привыкли к тому, что вода кипит при 100 градусах по Цельсию и превращается в лед, когда температура опускается до уровня ниже 0 градусов. Реальность, правда, такова, что оба утверждения и верны, и неверны одновременно. Да и сама шкала Цельсия не так проста, как кажется: очевидно, что, когда кто-то придумал воду, он не задумывался о появлении на свет спустя много тысячелетий шведа Андерса Цельсия и не подгонял характеристики воды под созданную ученым шкалу.
Но и это еще не все чудные открытия. Не все знают или помнят, что оригинальная шкала Цельсия выглядела иначе. Да, астроном назначил температуре кипения значение в 0 градусов, а таяния льда — в 100. В привычное же нам положение шкалу перевернул Карл Линней почти сразу после смерти Цельсия.
Ранее мы изучили возможность включить фары на скорости света, рассуждали на тему, сработает ли кока-кола против ржавчины, почему птиц и электриков не бьет током, когда они сидят на проводах, что будет, если Луна упадет на Землю, почему перец острый, действительно ли горячая вода замерзает в холодильнике быстрее, чем холодная и почему в СВЧ-печи взрываются яйца.
Также существуют другие шкалы измерения температур: на слуху фаренгейты и кельвины, хотя есть и множество прочих. Фаренгейты назвали в честь немецкого ученого, который предложил свой вариант в том же веке, что и Цельсий. Белорусу сложно понять, почему температура таяния льда равна +32°F, а кипения — +212. Мы не будем вдаваться в подробности, лишь напомним, что пересекаются фаренгейты и цельсии на уровне −40 градусов. При этом +40 по Фаренгейту — это всего 4 градуса тепла по Цельсию. Магия!
Кельвины, как и другие «экзотические» шкалы, не используются в повседневной жизни: в данном случае точкой отсчета принимают абсолютный ноль, который выглядит как −273,15 на более привычной нам шкале и −459,67 в фаренгейтах. Так что с кельвинами было бы так: «Дорогой, а сегодня на улице тепло?» — «Да, днем обещают 300 градусов в тени». Но вернемся к цельсиям.
Само понятие температуры можно рассматривать как выдуманный феномен: когда-то ученые решили, что температура кипения, например, будет составлять 100 градусов по Цельсию. Это как минимум удобно. Но с таким же успехом это могли быть 200 или 451 градус, просто точкой отсчета выбрали бы что-то иное — и мы точно так же привыкли бы.
К тому же в дело вступают разные законы физики и химии, которые вносят свою лепту. Поэтому, когда говорят о температуре кипения воды, имеют в виду «нормальные условия»: 100 градусов на уровне моря при обычном атмосферном давлении. Так что кипение воды подразумевает определенную температуру при определенном давлении, а не только температуру.
И тут в игру включается «кипяток». Внезапно оказывается, что кипяток, которым называют воду, достигшую точки кипения, в ряде случаев оказывается вполне прохладным. Скалолаз, добравшийся до самой высокой точки Эвереста, обнаружит, что температура бурлящей жидкости составляет всего около 70 градусов по Цельсию — все из-за снижающегося давления, которое и влияет на точку кипения (по этой причине готовка на высоте занимает больше времени). А на «совсем большой» высоте жидкой воды в открытом виде быть не может: она будет закипать моментально (и скоро мы доберемся до условий вакуума).
Работает это и в обратную сторону: по мере погружения под землю давление будет расти, так как атмосферный столб становится выше и тяжелее. Поэтому шахтер, который пробурит дыру к докембрийскому слою, сможет вскипятить чаек при температуре примерно 115 градусов — говорят, что рост составляет около 1 градуса по Цельсию на каждые 300 метров ниже уровня моря. Минск, кстати, местами расположился на высоте около 281 метра над уровнем моря, так что вода здесь закипает чуть быстрее, чем в Неманской низменности.
Все эти игры с давлением позволяют создавать перегретые жидкости — воду, которая ведет себя неправильно. Такая, например, не булькает в скороварках, в которых создается высокое давление, препятствующее кипению с одновременно высокой температурой.
Однако роль играет не только давление, но и состав воды. По этой причине, кстати, вскипяченная и теплая вода может остыть быстрее, нежели некипяченая с более низкой температурой. Причина заключается в избавлении от примесей, которые становятся точками образования кристаллов, когда речь идет о сверхохлажденной воде: если их нет, воде сложнее застыть (но стоит появиться одному кристаллику, и процесс не остановить).
То же касается и перегретой воды — ее проще получить с дистиллированным вариантом, хотя перегреть можно и другие жидкости. Основная проблема в этом случае — резкий выброс энергии (эдакое «взрывное кипение»). Судя по всему, это касается в первую очередь микроволновок с их особенностями передачи энергии объектам внутри: часть воды нагревается до температуры кипения, часть нет. При перемешивании или просто погружении другого объекта в воду «холодный» слой нагревается и моментально вскипает.
Некоторые эксперименты показывают, что при нормальном атмосферном давлении сверхочищенная вода противится кристаллизации до температуры около −48 градусов. Говорят, такую также можно найти в слоистых и кучевых облаках, хотя давление там куда меньше. Пилоты такую воду не жалуют: при контакте с поверхностями самолета она моментально образует лед. И это одна из характеристик переохлажденной воды: она достаточно нестабильна и замерзает быстрее «обычной» — почти моментально.
Если давление снижать, то и точка замерзания сместится вверх: чем ниже давление, тем раньше вода и кипит, и замерзает (при более низкой и более высокой температуре соответственно). Поэтому при определенном уровне давления и температуры вода попросту не сможет стать жидкой, а при нагреве сразу перейдет из твердого состояния в газообразное (мы не рассматриваем другие химические соединения, например «сухой лед»).
Если исходить из сказанного, ответ на вопрос, почему вода кипит в вакууме, напрашивается сам собой: практически полное отсутствие давления опускает точку кипения до минимальных значений. Причина — в накопленной молекулами воды кинетической энергии, готовой выплеснуться (пойти бурбалками, так сказать), но сдерживаемой давлением атмосферы.
Заодно давайте избавимся от заблуждения касательно «пузырьков воздуха» в кипящей воде. На самом деле внутри них вовсе не высвобождаемый «кислород», а пар — те самые разогнавшиеся молекулы воды. Поэтому не стоит опускать кипятильник в аквариум с рыбками.
И еще один важный момент: кипящая в вакууме вода вовсе не горячая, если она не получает дополнительную энергию от внешнего источника (например, плиты). А сбросив «напряжение», ту самую накопленную кинетическую энергию, она начинает еще и остывать: нет воздуха, который передавал бы свое тепло. В обычных условиях кипящая вода также отдает энергию, однако получает ее быстрее, поэтому и нагревается. Чудный мир физики!
Наш канал в Telegram. Присоединяйтесь!
Есть о чем рассказать? Пишите в наш телеграм-бот. Это анонимно и быстро
Перепечатка текста и фотографий Onlíner без разрешения редакции запрещена. ng@onliner.by